Photosynthate Partitioning into Starch in Soybean Leaves: I. Effects of Photoperiod versus Photosynthetic Period Duration.

نویسندگان

  • N J Chatterton
  • J E Silvius
چکیده

Photosynthesis, photosynthate partitioning into foliar starch, and translocation were investigated in soybean plants (Glycine max (L.) Merr. cv. Amsoy 71), grown under different photoperiods and photosynthetic periods to determine the controls of leaf starch accumulation. Starch accumulation rates in soybean leaves were inversely related to the length of the daily photosynthetic period under which the plants were grown. Photosynthetic period and not photoperiod per se appears to be the important factor. Plants grown in a 14-hour photosynthetic period partitioned approximately 60% of the daily foliar accumulation into starch whereas 7-hour plants partitioned about 90% of their daily foliar accumulation into starch. The difference in starch accumulation resulted from a change in photosynthate partitioning between starch and leaf residual dry weight. Residual dry weight is defined as leaf dry weight minus the weight of total nonstructural carbohydrates. Differences in photosynthate partitioning into starch were also associated with changes in photosynthetic and translocation rates, as well as with leaf and whole plant morphology. It is concluded that leaf starch accumulation is a programmed process and not simply the result of a limitation in translocation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photosynthate Partitioning into Starch in Soybean Leaves: II. IRRADIANCE LEVEL AND DAILY PHOTOSYNTHETIC PERIOD DURATION EFFECTS.

Two photosynthetic periods and photosynthetic photon flux densities (PPFD) were used to study the relationship between the rate of photosynthesis and starch accumulation in vegetative soybean leaves (Merr. cv Amsoy 71). Plants grown in short daily photosynthetic periods (7 hours) had higher rates of CO(2) fixation per unit leaf dry weight and of leaf starch accumulation than plants grown in lon...

متن کامل

Carbon assimilation and translocation in soybean leaves at different stages of development.

Carbon assimilation, translocation, and associated biochemical characteristics of the second trifoliolate leaf (numbered acropetally) of chamber-grown soybean, Glycine max (L.) Merr., plants were studied at selected stages of leaf development during the period from 10 to 25 days postemergence. Leaves of uniform age were selected on the basis of leaf plastochron index (LPI).The test leaf reached...

متن کامل

Biochemical Basis for Partitioning of Photosynthetically Fixed Carbon between Starch and Sucrose in Soybean (Glycine max Merr.) Leaves.

The control of photosynthetic starch/sucrose formation in leaves of soybean (Glycine max L. Merr.) cultivars was studied in relation to stage of plant development, photosynthetic photoperiod, and nitrogen source. At each sampling, leaf tissue was analyzed for starch content, activities of sucrose-metabolizing enzymes, and labeling of starch and sucrose (by (14)CO(2) assimilation) in isolated ce...

متن کامل

Regulation of photosynthetic carbon metabolism in cucumber by light intensity and photosynthetic period.

The effects of photosynthetic periods and light intensity on cucumber (Cucumis sativus L.) carbon exchange rates and photoassimilate partitioning were determined in relation to the activities of galactinol synthase and sucrose-phosphate synthase. Carbon assimilation and partitioning appeared to be controlled by different mechanisms. Carbon exchange rates were influenced by total photon flux den...

متن کامل

Effect of N-source on soybean leaf sucrose phosphate synthase, starch formation, and whole plant growth.

Soybeans (Glycine max L. Merr. cv Tracy and Ransom) were grown under N(2)-dependent or NO(3) (-)-supplied conditions, and the partitioning of photosynthate and dry matter was characterized. Although no treatment effects on photosynthetic rates were observed, NO(3) (-)-supplied plants in both cultivars had lower starch accumulation rates than N(2)-dependent plants. Leaf extracts of NO(3) (-)-sup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 64 5  شماره 

صفحات  -

تاریخ انتشار 1979